A Study of Lipid Profile in Sportspersons Performing Various Sports

Vijaya Lakshmi Akkupalli¹, Sudhir Babu Palli²
¹Associate Professor, Department of Physiology, ²Associate Professor, Department of Obstetrics & Gynecology, Viswabharathi Medical College and General Hospital, Kurnool, Andhra Pradesh, INDIA

ABSTRACT

Regular physical exercise in any form makes lipid profile favorable and reduces the chances of heart attacks and brain strokes. The valuable effects of exercise on plasma lipids have been widely investigated. These changes depend upon the type of sports in which one is indulged. 52 male sportspersons participating in 3 different games (basketball players, football players and distance runners) in the Kurnool district were selected for this study. Lipid profile of the three groups was determined and compared to each other. Total Cholesterol (TC), Triglyceride (TG) and Low Density Lipoprotein (LDL) levels were found to be significantly lower in distance runners as compared to football players and basketball players (p<0.05). While High Density Lipoprotein (HDL) level was found to be significantly increased in runners as compared to other groups. The results of this study showed that the lipid profile is more encouraging in sports involving more aerobic activity and less physical stress.

Keywords: lipid profile, football, distance runner, basketball players

INTRODUCTION

Body fitness prolongs life. Multiple studies have shown that people, who maintain appropriate body fitness, using judicious regimens of exercise and weight control, have the additional benefit of prolonged life. Modern science has eliminated the threat of death from most infectious diseases. Cardiovascular diseases, mostly ischemic heart disease, are now the leading cause of death worldwide. This situation is not limited to developed countries only. The global burden of deaths from cardiovascular diseases has shifted to low-and-middle income countries as lifestyles approach those of high income countries. The major risk factors for these diseases are sedentary lifestyles, faulty dietary habits, high blood pressure, dyslipidemia, tobacco use etc. These risk factors can be modified by various interventions. Among these interventions, regular physical activity contributes both to the primary and secondary prevention of several chronic diseases and is associated with a reduced risk of premature death.

The cardiovascular diseases usually affect older adults but atherosclerosis, one of the early events contributing to cardiovascular diseases, begins in early life. So the primary prevention should start from childhood. Dyslipidemia is the most important risk factor for atherosclerosis. Sawant et al. found increased prevalence of dyslipidemia in 31-40 year old Indian males, suggesting that this group is at increased risk of developing CAD leading to young infarcts.

Regular physical activity has been found to be associated with improvement in lipid profile, with or without dietary intervention. This improvement has also been found in patients. Aerobic exercise has been shown to increase HDL cholesterol levels while decreasing the levels of Triglycerides and LDL cholesterol level. But it has also been seen that training above the anaerobic threshold has no or even negative effects on blood lipoprotein profiles. The aim of the present study was to analyze the lipid profile in different sportspersons.

MATERIAL AND METHOD

52 male subjects of Kurnool district, AP were selected for the present study. In these, 15 were
basketball players, 20 football players and 17 subjects were distance runners. These subjects were given 1-2 hours of training in the morning and 1 hour training in the evening. All of these subjects were playing regularly at inter-university and zonal level for the last 3-4 years. All the sportspersons were matched according to the age, height and weight. Institutional ethical clearance was obtained before the beginning of the study.

All the subjects were healthy, non smoker and free of any cardio respiratory disorders. There was no family history of cardiovascular disorders, hypertension, diabetes and dyslipidemia. A written consent was taken from the subjects before the procedure.

Pulse and B.P. were measured after a period of rest. Heart rate was measured by counting radial pulse for a minute while blood pressure reading was taken using mercury sphygmanometer.

Intracubital venous blood (5ml) was withdrawn from the subjects in the morning (after 12hours of fasting). The blood was then allowed to coagulate for 60 minutes in incubator. The serum was obtained by centrifugation. 100 µl of serum was taken in a small container of the automatic analyzer. The probe takes up 10 µl of serum for each test and puts on a slide having the reagent in dry form. Data of subject was entered in the instrument and after 1 minute result was displayed on screen about HDL, LDL, VLDL, TGL, and S. Cholesterol.

One way analysis of variance (ANOVA) was used to compare the means. Levenne test was used to compare the homogeneity of the variance. When variances were homogeneous, comparisons were made using the post hoc Tukey test; the post hoc Games-Howell test was used for non-homogenous variances. p <0.05 was considered to be significant.

RESULTS

Table 1 shows the basic characteristics of the three groups. There is no significant difference in any parameters.

Table 2 shows the lipid profile in the three groups and the result of ANOVA test. Total Cholesterol (TC), Triglyceride (TG), Low Density Lipoprotein (LDL) and Very Density Lipoproteins (VLDL) levels were found to be significantly lower in distance runners as compared to football players and basketball players. High Density Lipoprotein (HDL) level was found to be significantly increased in runners as compared to other groups. There was no significant difference in any parameters between football players and basketball players.

DISCUSSION

On analyzing our study, the lipid profile is more positive in distance runners as compared to the other 2 groups. Among the sportspersons, runners have more aerobic activity and least anaerobic activity. Aerobic activity has been found to be associated with improvement in lipid profile7. On the other hand, athletes who practice in sports, including anaerobic activities, generally have lower values of HDL, lower VLDL, higher TC, TG and LDL in comparison to athletes who practice sports that include aerobic activities14. One potential mechanism by which aerobic exercise enhances lipid metabolism is alteration of plasma lipase activity (LPL) and hepatic lipase (HL). Lipoprotein Lipase is key enzyme in the catabolism of TG-rich lipoproteins15. Exercise has also been found to improve insulin resistance16. Impaired function of LPL has been found in individuals with insulin resistance17, 18.

Other factor contributing to the lipid profile in football and basketball players is the physical stress19 in the form of frequent falls, physical contact with other players. The physical stress is minimum in runners. These physical injuries lead to release of proinflammatory cytokines20, 21 which are associated with abnormalities in metabolism22. The level of endotoxin has also been found to release after strenuous exercise23 which can impair lipid metabolism24.

Stray-Gundersen ET al25 showed that low concentrations of total and LDL cholesterol are associated with minimal risk of artherosclerosis, and aerobic exercise has been similarly associated with a low risk of heart disease. Our study also showed similar patterns in terms of runners.

The sedentary persons, healthy or patients should be advised exercises which involve more aerobic activity and less physical injury e.g. running, jogging, walking etc. As the obesity and dyslipidemia are increasing in the young population, these interventions should start at early age and should be
within guidelines for the age and sex.

Table 1: Mean values (±SD) of basic characteristics

<table>
<thead>
<tr>
<th></th>
<th>Runners(15)</th>
<th>Football players(20)</th>
<th>Basketball players(17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age(years)</td>
<td>23.4±4.71</td>
<td>24.5±2.57</td>
<td>23.8±3.25</td>
</tr>
<tr>
<td>Height(cm)</td>
<td>171.97±3.54</td>
<td>170.44±3.38</td>
<td>171.86±4.76</td>
</tr>
<tr>
<td>Weight(kg)</td>
<td>69.33±7.06</td>
<td>70.26±4.91</td>
<td>69.5±7.14</td>
</tr>
<tr>
<td>Heart rate(bpm)</td>
<td>60.7 ± 5.02</td>
<td>61.92±5.11</td>
<td>62.74±3.18</td>
</tr>
<tr>
<td>Blood pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic(mmHg)</td>
<td>112.73±3.71</td>
<td>110.28±4.02</td>
<td>112.95±5.62</td>
</tr>
<tr>
<td>Diastolic(mmHg)</td>
<td>77.06±5.37</td>
<td>78.25±4.47</td>
<td>77.54±5.43</td>
</tr>
</tbody>
</table>

Table 2: Lipid profile in three different groups

<table>
<thead>
<tr>
<th></th>
<th>Runners(A)</th>
<th>Football players(B)</th>
<th>Basketball players(C)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC mg%</td>
<td>163.17±13.52</td>
<td>181.38±15.63</td>
<td>184.41±17.03</td>
<td>A-B<0.05, A-C<0.05</td>
</tr>
<tr>
<td>HDL mg%</td>
<td>57.23±5.14</td>
<td>50.97±7.74</td>
<td>48.35±6.83</td>
<td>A-B<0.05, A-C<0.05</td>
</tr>
<tr>
<td>LDL mg%</td>
<td>89.43±9.98</td>
<td>98.05±12.32</td>
<td>96.64±16.44</td>
<td>A-B<0.05, A-C<0.05</td>
</tr>
<tr>
<td>TG mg%</td>
<td>93.85±8.49</td>
<td>115.38±9.04</td>
<td>101.66±11.41</td>
<td>A-B<0.05</td>
</tr>
<tr>
<td>VLDL mg%</td>
<td>27.47 ± 8.49</td>
<td>36.77 ± 6.49</td>
<td>37.77 ± 5.49</td>
<td>A-B<0.05, A-C<0.05</td>
</tr>
<tr>
<td>S.Ch./HDL</td>
<td>3.38 ± 8.49</td>
<td>4.28 ± 6.49</td>
<td>4.78 ± 5.49</td>
<td>A-B<0.05, A-C<0.05</td>
</tr>
</tbody>
</table>

CONCLUSION

The observations provided affirmation to the fact that regular physical exercise in the form of sports helps in obtaining a low risk lipid profile than a leisure activity or a sedentary life style. Regular sports activity should be promoted at every level to reduce the risk of cardiovascular disease.

Acknowledgement: We sincerely thank all subjects who gave consent and participated in this study.

Conflict of Interest: None

Source of Funding: Nil

REFERENCES

Call for Papers/ Article Submission

Article submission fee

- Please note that we charge manuscript handling charges for all publications. Charges can be enquired by sending mail.
- In cases of urgent publication required by author, he/she should write to editor for discretion.
- Fast tracking charges are applicable in urgent publication.
- Please note that we charge only after article has been accepted for publication, not at the time of submission.
- Authors have right to withdraw article if they do not wish to pay the charges.

Article Submission Guidelines

Please submit paper in following format as far as applicable

1. Title
2. Names of authors
3. Your Affiliation (designations with college address)
4. Corresponding author- name, designations, address, E-mail id
5. Abstract with key words
6. Introduction or back ground
7. Material and Method
8. Findings
9. Discussion / Conclusion
10. Acknowledgement
11. Conflict of Interest
12. Source of Support
13. References in Vancouver style.
14. Word limit 2500-3000 words, MSWORD Format, single file
15. Please quote references in text by superscripting.

OUR CONTACT INFO

Prof (Dr) R K Sharma
International Journal of Physiology
Institute of Medico-Legal Publications
4th Floor, Statesman House Building,
Barakhamba Road, Connaught Place, New Delhi-110001
Mob: 09971888542
E-mail: editor.physiology@gmail.com
Website: www.ijop.net
CALL FOR SUBSCRIPTIONS

ABOUT THE JOURNAL International Journal of Physiology is a double blind peer reviewed international journal which has commenced publication from January 2013. The journal is half yearly in frequency. The journal covers all aspects of physiology. The journal has been assigned ISSN 2320-6039 (Print Version) and ISSN 2320-608X (Online Version). The journal is covered by Index Copernicus, Poland and many other international data bases.

<table>
<thead>
<tr>
<th>Journal Title</th>
<th>Pricing of Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indian</td>
</tr>
<tr>
<td>International Journal of Physiology</td>
<td>Print</td>
</tr>
<tr>
<td></td>
<td>INR 7000</td>
</tr>
</tbody>
</table>

NOTE FOR SUBSCRIBERS

- Advance payment required by cheque/demand draft in the name of "Institute of Medico-Legal Publications" payable at New Delhi.
- Cancellation not allowed except for duplicate payment.
- Claim must be made within six months from issue date.
- A free copy can be forwarded on request.

Send all payment to:

Prof (Dr) R K Sharma
International Journal of Physiology
Institute of Medico-Legal Publications
4th Floor, Statesman House Building,
Barakhamba Road, Connaught Place, New Delhi-110001
Mob: 09971888542
E-mail: editor.physiology@gmail.com
Website: www.ijop.net